

Improving Failure Responsiveness in Jini Leasing

Scott Rose, Kevin Bowers, Steve Quirolgico, and Kevin Mills

National Institute of Standards and Technology
 srose@nist.gov

Abstract

Distributed systems require strategies to detect and recover
from failures. Many protocols for distributed systems employ
a strategy based on leases, which grant a leaseholder access
to data or services for a limited time (the lease period).
Choosing an appropriate lease period involves tradeoffs
among resource utilization, responsiveness, and system size.
We explain these tradeoffs for Jini Network Technology.
Then, we describe an adaptive algorithm that enables a Jini
system, given a fixed allocation of resources, to vary lease
periods with system size to achieve the best responsiveness.
We anticipate that similar procedures could improve failure
responsiveness in other distributed systems that rely on
leases. We describe how we implemented our adaptive
algorithm in “reggie”, a publicly available implementation
of the Jini lookup service. We can use our implementation to
demonstrate how adaptive leasing provides the best available
responsiveness as network size varies.

1. Introduction

Distributed systems require strategies to detect and

recover from failures. One commonly used strategy employs
a leasing mechanism, where a node grants a leaseholder
access to a resource for a limited time (the lease period).
Once the resource is no longer needed, the leaseholder may
relinquish its lease. If the resource is needed beyond the
original lease period, then the leaseholder can renew the lease
by requesting additional lease periods. If the leaseholder does
not renew before expiration of the lease period, the lease
grantor assumes leaseholder failure and terminates the lease.

Choosing an appropriate lease period entails tradeoffs
among resource utilization, responsiveness, and number of
leaseholders. We explore these issues in the context of
service-discovery protocols, which allow distributed software
components to discover each other and compose themselves
into assemblies. Though several service-discovery protocols
currently exist [e.g., 1-4], we selected Jini Network
Technology [1] to demonstrate our ideas, because leasing
plays a central role in registering Jini services. We base our
analysis on the Jini specification [2].

2. Jini Leasing

Jini defines an architecture that enables clients and

services to rendezvous through a third party, known as a
lookup service. A Jini service registers a description of itself
with each discovered lookup service. A Jini client may
register a request to be notified by a lookup service of
arriving or departing services of interest, or of changes in the
attributes describing services of interest.

Fig. 1. Message exchanges for four Jini leasing scenarios.

Figure 1 illustrates message exchanges for some typical

Jini leasing scenarios. A registering component requests
registration for duration LR, which may be accepted at time
TG for a granted lease period LG < LR. LR may be any, which
allows any value for LG. To extend registration beyond LG,
registering components must renew the lease prior to an
expiration time TE = TG + LG; otherwise, registration is
revoked. This cycle continues until a Jini component cancels
or fails to renew a lease. Lookup services assign LG within a
configured range, LMIN < LG < LMAX. While a granted lease
may not be revoked prior to TE, lookup services may deny
any lease request.

We can analyze performance of a Jini leasing system.
Let SR be lease-request size, SG be lease-grant size, and N be

Jini
Service

Jini
Lookup
Service

TG + LG

(b) Lease Denial

Jini
Service

Jini
Lookup
Service

Lease Request (LR)T
Lease Grant (LG < LR)

TG

Lease Request (LR)

Lease Grant (LG < LR)
TG’

(a) Initial Lease Grant & Renewal

Jini
Service

Jini
Lookup
Service

Lease Request (LR)T
Lease Grant (LG < LR)

TG

Lease Cancel
Lease Cancelled

(c) Lease Cancellation

TG + LG

TR

TC

Jini
Service

Jini
Lookup
Service

Lease Request (LR)T
Lease Grant (LG < LR)

TG

(d) Lease Expiration

TG + LG
TE

Lease Request (LR > LMAX)
T

Lease Denied

number of leaseholders. Typically, a leaseholder and lookup
service exchange one request-grant pair per renewal cycle,
with rate 1/LG Hz. Assuming identical LG assigned for each
lease, bandwidth use (B) can be estimated as:

)()(GRG SSLNB +⋅= . Assuming constant SR and SG, B increases
linearly with N and decreases exponentially with LG. Another
metric, responsiveness, R, measures the latency with which
lookup services can detect leaseholder failure. Assuming
uniformly distributed failure times, then expected
responsiveness is 2GLR = ; thus, R is independent of N,
but B and R are related through LG.

These relationships can be used to constrain and predict
behavior of a leasing system. For example, assume known
requirements for R and B. The responsiveness equation can
be rewritten to determine LG [i.e., RLG 2=]. Then, using LG,
the bandwidth equation can be transformed to find maximum
system size [i.e.,)()(GRGMAX SSLBN +⋅=]. With this
information, lookup services could grant lease periods < LG
to ensure required responsiveness, deny requested leases that
would consume an excess share of bandwidth, and deny
requests for leases once N reaches NMAX.

Fig. 2. System responsiveness (R) – left-hand y-axis – and
bandwidth usage (B) – right-hand y-axis – for three granted
lease periods (LG = 15 s, 60 s, and 120 s) as system size
increases (N = 10 to 200 leaseholders).

3. A Self-adaptive Algorithm for Jini Leasing

We propose an algorithm that restricts lease requests to
LR = any. Assuming a leasing system must consume at most
bandwidth B and guarantee minimum average responsiveness
RMIN, a lookup service can grant a maximum lease period
LMAX = 2RMIN. Given B, SR, and SG, we can determine a
maximum lease-renewal rate G = B / (SR + SG). For
minimum system size, NMIN = 1, the lookup service can grant
a minimum lease period LMIN = 1/G. While this value for LMIN
respects the bandwidth constraint, other factors should be
considered. For example, at LMIN = 1/G leaseholder
processing burden might prove unacceptable. Instead, a
leasing system might constrain maximum responsiveness
(RMAX), giving a minimum lease period LMIN = 2RMAX.

Knowing N, a lookup service may select a suitable granted
lease period from a range (LMIN < LG < LMAX) using a simple
algorithm. First, compute LG = N/G. If LG > LMAX, then deny
the lease; otherwise, if LG < LMIN, then set LG = LMIN.
Assigning LG with this algorithm permits a leasing system to
constrain B and guarantee minimum average responsiveness
(RMIN), while providing the best responsiveness achievable
(up to RMAX) as N varies over 1..NMAX.

Fig. 3. Responsiveness (R) – left-hand y-axis – and bandwidth
usage (B) – right-hand y-axis –as system size decreases (N =
200 to 0 leaseholders).

4. Simulation Results

We coded an SLX discrete-event simulation [5] model of

Jini to confirm our analysis and to investigate dynamic
behavior of our self-adaptive algorithm. We conducted
simulation experiments, varying N from 10..200 and LG from
15..300 s in 15-s increments. We used SR = 128 and SG = 32
bytes. Figure 2 shows simulated results for average B and R
when LG = 15 s, 60 s, and 120 s. The simulation confirms
our analyses: (1) B increases linearly with N for a given LG
and decreases exponentially with LG for a given N and (2) R
= LG/2, independent of N. Next, we simulated our adaptive
leasing algorithm. Figure 3 illustrates how the algorithm
constrains B while improving R as system size decreases.
These promising results led us to implement our adaptive
algorithm in “reggie”, a publicly available implementation of
a Jini lookup service.

5. Implementation in “reggie”

We base our adaptive-leasing implementation on the
“reggie” lookup server provided with the Sun Microsystems
Jini release. The “reggie” server implements the Jini
specification for a lookup service, and includes additional
extensions to allow remote administration of the lookup
server through a service proxy. Administrative actions occur
through the RegistrarAdmin interface, which is not part of the

0

10

20

30

40

50

60

70

10 30 50 70 90 110 130 150 170 190

N (leaseholders)

R
 (s

)

0
200
400
600
800
1000
1200
1400
1600
1800
2000

B
 (b

yt
es

/s
)

R (LG = 120 s)

R (LG = 60 s)

R (LG = 15 s)

B (LG = 15 s)

B (LG = 120 s)

B (LG = 60 s)

0

10

20

30

40

50

60

70

10 30 50 70 90 110 130 150 170 190

N (leaseholders)

R
 (s

)

0
200
400
600
800
1000
1200
1400
1600
1800
2000

B
 (b

yt
es

/s
)

R (LG = 120 s)

R (LG = 60 s)

R (LG = 15 s)

B (LG = 15 s)

B (LG = 120 s)

B (LG = 60 s)

0

50

100

150

200

250

200 180 160 140 120 100 80 60 40 20

N (leaseholders)
B

 (b
yt

es
/s

)

0

5

10

15

20

25

30

35

40

R
 (s

)

B

R

0

50

100

150

200

250

200 180 160 140 120 100 80 60 40 20

N (leaseholders)
B

 (b
yt

es
/s

)

0

5

10

15

20

25

30

35

40

R
 (s

)

B

R

Jini core specification, but a Sun extension to Jini
(com.sun.jini.reggie package). The RegistrarAdmin interface
allows basic monitoring, configuration, and control of an
operational lookup server just as if it were any other type of
Jini-enabled service. Using the RegistrarAdmin interface, an
administrator can also perform some basic manipulation of
minimum and maximum granted lease periods for services
and events maintained on the lookup server. However, this
method requires constant human supervision to optimize
leasing performance in a Jini network. Such human
supervision would prove impractical in a large network
where numerous services may join and leave.

To implement adaptive leasing, we modified the “reggie”
server implementation to assign lease grant times (LG) based
on the required failure responsiveness (R) of the system and
the bandwidth (B) allocated to lease renewal transactions.
We added a collection of access methods to the
RegistrarAdmin interface, callable via remote-method
invocation (RMI), allowing a Jini client to view: the current
LMIN, LMAX, and LG, the number of leaseholders (N) on the
server, the instantaneous average bandwidth (BAVG)
consumed by lease renewals, and the instantaneous average
failure responsiveness (RAVG). Since values for granted lease
periods can be adjusted from changes to the allocated
bandwidth and target responsiveness, we added methods to
set B and R in the RegistrarAdmin interface.

The lookup server (com.sun.jini.reggie.RegistrarImpl)
starts with default values for LMIN and LMAX. A Jini client can
use the RegistrarAdmin interface to adjust target
responsiveness and allocated bandwidth. Based on these
adjustments, the lookup server computes new values for LMIN
and LMAX. At regular intervals, the lookup service samples
average bandwidth use (BAVG) and the number of
leaseholders, adjusting granted lease periods (LG)
accordingly. Current bandwidth usage is calculated by
multiplying the number of lease transactions (RMI calls) by
the size of messages involved in the transaction. Currently,
the lookup service records these values once every sixty
seconds of operation, or when an administrator changes R or
B.

When a Jini service registers with the lookup service, it
may either request a specific lease interval or use Jini’s
LEASE.ANY constant to allow the lookup server to select an
appropriate lease period for the service. In our
implementation, if the service requests the LEASE.ANY
constant, the lookup service uses the current value for LG as
the granted lease period. Otherwise, if the service requests a
lease period in the range of LMIN and LMAX, it is granted. The
lookup service rejects requests for leases outside this range.

Figure 4 shows a snapshot of a Jini client graphical user
interface (GUI) that uses the modified “reggie”
RegistrarAdmin interface. The left-hand column plots values
for LG, for bandwidth used (BAVG), and for average
responsiveness (RAVG) over time. These graphs display values

returned to the client from regular polling of access methods
RegistrarAdmin interface, which uses RMI to call the
corresponding method in the lookup server. The right-hand
column of Figure 4 lists leaseholders using the lookup
service, and displays their current status in the Jini network.
Note that the GUI displays only the current known status, as a
service may have left the network, but a proxy could still be
registered with the server. The proxy would be purged when
its lease expires. The GUI in Figure 4 does not include the
RegistrarAdmin GUI used to adjust allocated bandwidth or
target responsiveness in the lookup service.

Fig. 4. Sample Graphical User Interface for a Jini client
monitoring a lookup server that implements adaptive leasing

6. Acknowledgments

The work described in this paper is funded in part by the

DARPA Fault-Tolerant Networks program and the NIST
Pervasive Computing program. We gratefully acknowledge
support from Dr. Doug Maughan of DARPA and Dr. Susan
Zevin of NIST.

7. References

[1] Jim Waldo. “The JiniTM architecture for network-centric

computing”, Communications of the ACM, July 1999.
[2] Universal Plug and Play Device Architecture, Version 1.0, 08

Jun 2000 10:41 AM. © 1999-2000 Microsoft Corporation. All
rights reserved.

[3] Ken Arnold et al, The Jini Specification, V1.0 Addison-Wesley,
1999. The latest version is available on the web from Sun.

[4] Service Location Protocol Version 2, Internet Engineering Task
Force (IETF), RFC 2608, June 1999.

[5] James O. Henriksen, “An Introduction to SLXTM” Proceedings
of the 1997 Winter Simulation Conference, ACM, Atlanta,
Georgia, December 7-10, 1997, pp. 559-566.

